
Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 

 

 630  

SEMI-SUPERVISED WHEAT EAR DETECTION ALGORITHM BASED ON THE 
MODIFIED YOLOv8 

/ 
基于改进 YOLOv8的半监督麦穗识别算法 

 
 Yu ZHANG 1), Zhihui XU 1), Fuzhong LI 1), Xiaoying ZHANG *1), Xiao CUI *1) 

1) School of Software, Shanxi Agricultural University, Shanxi/China; 

Tel: +86-15803449361; E-mail: xiaoyingzhang@sxau.edu.cn; cuixiaocuilu@163.com  

DOI: https://doi.org/10.35633/inmateh-75-54 

 

Keywords: wheat spike, object detection, semi-supervised learning, YOLOv8 
 

ABSTRACT  

In contemporary agricultural practices, the use of image and video acquisition technologies, such as drones 

and cameras, has become increasingly common for capturing and monitoring crop growth in agricultural fields. 

The reliance on visual data for analyzing farm management conditions and facilitating decision-making 

processes is gaining significant traction. However, in practical applications, image acquisition tools often face 

challenges in maintaining optimal distance and angle during data capture, which can negatively impact the 

detection accuracy of existing object detection methods. Semi-supervised learning plays a crucial role in 

improving object detection. In this study, a semi-supervised algorithm for wheat spike recognition was 

developed based on an optimized YOLOv8n model. The model incorporates SPDConv and PSA attention 

modules after the SPPF layer, effectively reducing computational and memory demands while enhancing 

model performance. The proposed model achieved an accuracy of 94.2%, outperforming YOLOv5s, Efficient 

Teacher, and the baseline YOLOv8n by 10.9%, 4.5%, and 6.1%, respectively—demonstrating its strong 

potential for practical agricultural applications. 

 

摘要  

当今农业，使用无人机或摄像头这样的图像视频采集工具拍摄或监控农田作物生长情况变得常见，依靠这些图
像分析农田管理情况和辅助决策也会变得越来越有市场。但在实际生产中，图像采集工具在拍摄时很难保持合
理的距离和角度，这使得现有的目标检测方法检测精度低。而半监督学习对提高物体检测至关重要。我们开发
了一种用于麦穗识别的半监督学习算法，使用了改进的 YOLOv8n，并在 SPPF之后集成了 PSA注意力机制
和 SPDConv。这些改进减少了计算和内存需求，提升了模型性能。我们的模型达到了 94.2%的准确率，分别
比 YOLOv5s、Efficient Teacher和 YOLOv8n高出 10.9%、4.5%和 6.1%，展示了其实际潜力。 
 

 

INTRODUCTION 

 Wheat, recognized as a globally cultivated food crop, has maintained its status as the third most 

extensively sown crop in terms of both area and total production since the 1940s. It serves as a staple food 

for approximately one-third of the global population and is cultivated across an estimated 224 million hectares, 

thereby supporting around 30 percent of the world's inhabitants (Eversole et al., 2014; Li et al., 2018a). 

Enhancing wheat yield per unit area remains a primary objective of contemporary breeding efforts. The 

implementation of automated detection and counting of wheat ears facilitates the rapid and precise 

assessment of ear numbers, which subsequently allows for the estimation of yield per plant, yield per unit area, 

and overall production. This advancement significantly aids researchers in optimizing breeding efficiency. With 

continuous advancements in artificial intelligence technologies, various approaches, including image 

processing, machine learning, and deep learning, are increasingly being applied to wheat yield prediction and 

phenotypic identification. 

The methodologies employed for counting wheat ears through traditional image processing techniques 

can be broadly classified into three distinct categories (Fu Jingbo, 2021; Liu et al., 2019): curve fitting 

segmentation, image-based fractal segmentation, and pixel-based area estimation (Liu Tao, 2014). These 

approaches typically utilize color features or grain characteristics to extract images of wheat ears, followed by 

morphological operations such as corrosion expansion, cavity filling, and refinement processing. This 

sequence of operations facilitates the enumeration of wheat spike skeleton images through angular point 

detection methods. Moreover, Li et al., (2018b), implemented a technique that involved color space 
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transformation, utilizing a custom device to capture RGB images of wheat in natural field conditions, which 

were subsequently converted to HSV space.  

The saturation component (S) was subjected to binary conversion, resulting in a binary image. An 

adhesion object segmentation algorithm was then applied to the wheat ear images, followed by the 

implementation of a concave point detection method for segmentation and counting, ultimately enabling the 

calculation of grain numbers and yield prediction. Furthermore, Fernandez-Gallego et al., (2018), introduced 

a wheat ear counting method based on an enhanced K-means clustering algorithm, which relies on color 

feature clustering. In this approach, each sub-region identified through clustering is interpreted as representing 

a wheat ear, with the total number of sub-regions serving as an estimate of the wheat ear count. While 

traditional machine learning techniques for wheat ear counting significantly reduce the labor required 

compared to manual counting and enhance efficiency and accuracy to some extent, the complexity of field 

environments presents challenges in maintaining consistent image quality and limits the versatility of these 

methods. 

The continuous advancements in deep learning within the domain of agricultural research have 

prompted certain scholars to integrate YOLOv5 with semi-supervised learning methodologies, culminating in 

the creation of a semi-supervised target detection algorithm that is applicable across various contexts. In their 

study,  Zhou et al., (2023), presented an innovative semi-supervised adaptive algorithm, named SSDA-YOLO, 

which combines a YOLOv5-based semi-supervised framework with a knowledge distillation approach. This 

algorithm enhances the quality of pseudo-labels through improved view refinement and global view filtering. 

Furthermore, Lyu et al., (2022), reported a notable enhancement in the recognition accuracy of citrus bagging 

by incorporating a strip attention module into the YOLOv5 backbone and employing additional semi-supervised 

learning techniques. 

Despite the advancements made in the aforementioned studies, which have enhanced the algorithm 

from various perspectives and yielded certain outcomes, significant challenges persist when applying these 

methods to single-stage target detection models, such as YOLO. In particular, the detection of wheat ears 

presents several critical issues. Firstly, there is an inconsistency in the scale of wheat spike targets. As wheat 

ears progress from the heading stage to maturity throughout their growth cycle, the size of individual wheat 

plants varies temporally. Additionally, certain weeds exhibit morphological similarities to wheat ears, thereby 

complicating the accurate differentiation and identification of these targets based solely on visual 

characteristics. Secondly, the samples of wheat spikes are frequently densely clustered. In areas where wheat 

plants are closely spaced, occlusion of wheat ears is a prevalent issue. The dataset contains a substantial 

number of samples, which not only affects the accuracy of target identification but also complicates the labeling 

process. Finally, the extensive volume of data within the wheat spike dataset results in high labor costs 

associated with large-scale annotation. 

In response to the challenges previously outlined, this study proposes a semi-supervised algorithm for 

the detection of wheat spikes, which is based on an enhanced version of YOLOv8. The algorithm integrates 

Spatial Depth Conversion Convolution (SPDConv) to improve the detection of small objects in low-resolution 

images, thereby augmenting the feature extraction capabilities for such targets (Sunkara and Luo, 2023). 

Additionally, the PSA attention mechanism is incorporated to reduce the computational and memory demands 

associated with self-attention in visual tasks, ultimately resulting in enhanced detection accuracy. Furthermore, 

this paper presents improvements derived from the modified Efficient Teacher framework (Xu et al., 2023), 

which effectively increases the detection accuracy of the algorithm by utilizing valuable information from 

unlabeled images, all while preserving the model's original size. 

  
MATERIALS AND METHODS 

Data collection and data processing 

To enhance the generalization performance of the model, this study employed two distinct datasets for 

training. One of these datasets, known as the Wheat Detect (WD) dataset, consists of images of wheat 

captured at the Yang Jia Zhuang Village experimental base of Shanxi Agricultural University. The specific 

wheat variety used for this dataset is Agricultural University 212. The images were systematically collected 

from April to June 2024, with a frequency of every three days, to comprehensively cover the filling and 

maturation stages of the wheat.  

The shooting process involved a variety of weather conditions, encompassing both sunny and overcast 

scenarios. The iPhone 15 Pro Max was employed as the primary photographic equipment, leading to the 
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acquisition of over 6,500 images of wheat canopies, of which 3,011 were selected for further analysis. All 

images were stored in JPG format, ensuring a consistent resolution of 3648×2736 pixels.  

The LabelImg software was utilized for image annotation, with the sole category label assigned being 

"wheat." The resulting annotation data were subsequently saved as "txt" files in the YOLO format.  

The second data set is the Global Wheat Head Detection (GWHD) from the global wheat public database 

(David et al., 2021). This data set pooled 6,422 RGB images with a resolution of 1,0,24×1,024 pixels, and 

275,187 labeled ears of wheat. The images were collected from Europe, North America and Asia, covering a 

variety of varieties, planting conditions, climate types, as well as collection methods, thus ensuring the diversity 

of the data set in terms of genotype and environment. These characteristics of GWHD data sets help improving 

the accuracy and reliability of wheat ear detection and positioning. Fig.1 shows some examples of images 

generated from data obtained from the Yang Jia Zhuang Experimental Base. 

 

 
Fig. 1 - Images of wheat at different growth stages 

 

YOLOv8ps structure 

As depicted in Fig.2, Efficient Teacher, which is constructed on YOLOv5, introduces several 

enhancements to the network. Efficient Teacher proposes three modules to implement a scalable and effective 

SSOD framework. The Dense Detector module improves the quality of pseudo labels with dense input and 

offers better inference efficiency; the Pseudo Label Assigner module categorizes pseudo labels into two types 

to mitigate the issue of pseudo labeling. 

 

 
Fig. 2 - Semi-supervised training framework 

 

 

Inconsistency problem, Epoch Adaptor reduces training time and the inconsistency of features. Although 

Efficient Teacher shows significant improvement in detection accuracy compared to SSOD and one-stage 

anchor-based detectors, it still faces significant challenges in the accuracy of small object detection. These 

challenges mainly stem from the fact that small objects occupy fewer pixels in images, making feature 

extraction difficult and thus affecting the accuracy of detection. To address these challenges, this study 

proposes a small object detection network architecture based on YOLOv8. The main innovations include: in 

the initial stage of the study, the YOLOv8ps model was proposed. By adopting this strategy, it was expected 

to capture the detailed features of small objects more accurately, thereby improving the overall detection 

performance. Subsequently, this study delved in to the efficiency of convolution (SPDConv) within CNN 

architectures and introduced four layers of SPDConv after the Conv layers in the YOLOv8 backbone network. 
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This method effectively maintains the detail information of the input image by transforming the spatial 

dimensions into depth dimensions, significantly enhancing the feature extraction performance for small objects.  

Furthermore, to reduce the computational burden on the YOLOv8n network, Partial Self-Attention (PSA) 

was integrated, as proposed in YOLOv10. PSA addresses the high computational complexity and memory 

consumption associated with traditional self-attention mechanisms in visual tasks, thereby significantly 

enhancing the model’s performance and capability. 

As shown in Fig 3, the lightweight network architecture proposed in this study mainly consists of three 

core components: the backbone network, the neck structure, and the head module. The primary function of 

the backbone network is to extract feature information from the input image data and output feature maps at 

three different scales. During this feature extraction process, the study introduces the SPDConv module, which 

aims to take the feature maps produced by the previous convolution operation as input, process them through 

the SPD layer, and then perform further feature extraction through consecutive convolution layers. Additionally, 

the study integrates the PSA attention mechanism to address the inherent high computational complexity and 

significant memory consumption issues of traditional self-attention mechanisms in visual tasks. 

 
Fig. 3 - Network structure of improved YOLOv8 algorithm 

 

The neck design of the network is used to enhance the ability to detect objects of different sizes by 

fusing feature maps from the backbone network at different scales, and then outputs three different scale 

feature maps. Similarly, both PSA and SPDConv are utilized for feature extraction and downsampling. Three 

independent and decoupled header structures are designed at the network's front, each responsible for 

predicting and analyzing feature maps of three distinct scales. This design allows each header structure to 

concentrate on processing feature information of a particular scale, thereby enhancing the network's capacity 

to capture and predict features across various scales. Consequently, this significantly improves the model's 

performance in visual tasks involving small objects. The darkened section in Fig. 3 represents the structural 

improvement module. 

SPDConv The structure is composed of space to depth (SPD) layer and no convolutional step size 

(Conv) layer, replacing the pooling operation and convolution operation with step size in a similar way, and 

using scientific parameters to reduce the number of channels, which is suitable for a variety of convolutional 

neural network (CNN) architectures. In the traditional CNN architecture, the direct application of step 

convolution and pooling layer will lead to the gradual decrease of the spatial resolution of images with the 

deepening of the deepening of the network level, resulting in the loss of details of small objects, which makes 

the network encounter difficulties in accurately identifying these small objects. However, the combination of 

using SPD layers with step-free convolution layers enables the CNN to more effectively handle the challenges 
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posed by small objects and low-resolution images, thus improving the performance and robustness of the 

model in these complex scenarios. 

For a specific feature plot X, the down sampling was performed by the scaling factor. Fig.4b shows the 

space-to-depth operation, where the spatial information is reorganized into the depth channel. When the scale 

factor is set to 2, the four feature subgraphs shown in Fig.4c can be obtained, and the shape of each subgraph 

is (S/2, S/2, C), which realizes the effect of subsampling the feature graph X by 2 times. Subsequently, the 

four feature sub-maps are successively connected along the channel dimension to form the feature map in 

Fig.4d (S/2, S/2,4C). After completing the feature transformation in the SPD layer, the dimensions change from 

Fig. 4d (D. 4C) to (S/2, S/2, D). The detailed procedure is shown in Figure Fig.4. 

In this study, four SPDConv layers were introduced after the Conv convolution layer. This move aims to 

take the feature graph generated by the convolution operation of the previous layer as input, and to transform 

the spatial dimension of the input image into depth dimension, so as to improve the depth of the feature graph 

without losing information. Subsequently, the convolution processing through the continuous Conv layer 

realizes the feature extraction without reducing the feature graph size, which effectively maintains the detailed 

information of the image. Compared with the traditional convolution operation, this insertion method is more 

efficient in retaining the information in the channel, which significantly enhances the feature extraction 

performance for small targets (Fig 3). 

Despite the self-attention mechanism, its computational amount and memory footprint are high. To solve 

this problem, YOLOv10 proposed an efficient local self-attention mechanism(Wang et al., 2024), namely the 

PSA module. As shown in Fig.3, this module first divides the feature graph into two parts by channels after the 

convolution operation, one of which is sent to the N_PSA module composed of multi-head self-attention 

module (MHSA) and feedforward network (FFN). Subsequently, the two parts are reconnected and fused 

through a convolution operation. The PSA module is only placed after the lowest resolution stage, effectively 

avoiding the excessive consumption of resources caused by the squared computational complexity of the self-

attention mechanism. Through this design, the PSA module can solve the high computational complexity and 

memory footprint problems faced by the self-attention mechanism in visual tasks, thus significantly improving 

the performance and capability of the model (Fig 5). 

 

 

Fig. 4 - Illustration of SPDConv with  

a Scale Factor of 2 

Fig. 5 - The partial self-Attention module 

(PSA) 

Experimental Environment 

The operating system used in this experiment is Windows 11, and the development environment of the 

model is Python 3.8, CUDA 11.1.0 and PyTorch 1.11.0. The training process was performed on the NVIDIA 

GeForce RTX 4060 graphics card. During the training process, YOLOv8n was used as the basic model, the 

size of the input image was set to 640×640 pixels, the batch size was set to 32, and the weight attenuation 

coefficient was set to 0.0005. In the fully supervised learning mode, the initial learning rate is set to 0.01, the 

minimum learning rate is set to 0.002, and the adjustment strategy of the learning rate adopts the cosine 

annealing method for a total of 40 training cycles (epochs). In the semi-supervised learning mode, the learning 

rate maintained a fixed value of 0.01, with a total of 300 training cycles. 

Evaluation indexes of the model 

A range of accepted evaluation measures in the field of target detection were used, including precision 

(Precision, P), recall (Recall, R), mean precision (mean Average Precision, mAP50) mAP50 at the IoU 

threshold of 0.5. Determine the integral of the precision-recall (P-R) curve. 

In this study, only a single category of wheat ears was involved, with a sample size of n=1. Precision (P) 

is defined as the ratio of the number of correctly identified wheat ear samples to the total number of predicted 
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wheat ear samples, while Recall (R) is the ratio of the number of correctly identified wheat ear samples to the 

total number of actual wheat ear samples. 

Model Detection Accuracy Analysis 

In this research, a 50 cm × 50 cm plastic board was used to contain the samples during each shooting 

session, after which manual counting was performed. Subsequently, image capture was conducted, as 

illustrated in Figure 6. All images that had been manually counted were then utilized as a training set to assess 

the model's accuracy in identifying real-world scenarios and to compare it with other models. 

 
Fig. 6 - Wheat image 

RESULTS 

In this study, our goal is to develop an efficient wheat spike detection algorithm by improving the original 

YOLOv8 network. These improvements include adjusting the network architecture of YOLOv8, incorporating 

SPDConv and PSA attention mechanisms, and embedding them into a semi-supervised algorithm. To 

elucidate the impact of each improvement on the network, ablation experiments were conducted under the 

same training environment and hyperparameters. The YOLOv8n model served as the baseline, against which 

the previously mentioned improvements were sequentially implemented. 

 
 

Fig. 7 - Changes in mAP50 metric during semi-

supervised training stage 

Fig. 8 - mAP50 metric of different annotation sample 

ratios 

 

To verify the effectiveness of the proposed improvement strategy in improving the model accuracy, the 

ablation experiment was conducted based on the YOLOv8n algorithm. The experimental results are detailed 

in Table 1. Among them, A represents the introduced SPDConv module, and B represents the PSA attention 

mechanism added after SPPF, while C represents the semi-supervised object detection method mentioned in 

this article. 

According to the data in Table 1, the detection performance is significantly improved with the gradual 

integration of the improved module YOLOv8n. However, the proposed algorithm did not achieve the best 

performance in recall rates. The reason for this phenomenon is that the algorithm improves the extraction 

ability of the small target features, but also optimizes the computational complexity and memory footprint. 

Nevertheless, a slight decrease in recall is acceptable because the algorithm's accuracy and average accuracy 

have peaked, given the mutual constraints between accuracy (P) and recall (R). 
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Table 1 

Results of the ablation experiment 

 

For the fully supervised training, a ratio of 0.2 and 1400 samples were used, after which 5600 images 

were introduced as unannotated samples to perform the semi-supervised training. Fig 7 illustrates the evolution 

of mAP50 values during fully supervised versus semi-supervised training. As can be seen from the figure, after 

the full supervised training, the mAP50 index of the algorithm has basically reached the fitting state, with the 

accuracy of 90.4%. Then, 3200 unlabeled samples were added for semi-supervised training. At this time, the 

mAP50 index of the model went through the process of first reducing and then rising, and finally achieved 

further improvement with an accuracy rate of 94.2%. The reason for the decrease lies in the early stage of the 

semi-supervised training, where the accuracy of the model is low and the quality of the pseudo-labels 

generated by the teacher model is not high. However, as the training continues, the quality of the pseudo-

labels gradually improves, and the detection accuracy of the model is correspondingly enhanced. 

Table 2 

Comparative experiments on object detection algorithms 

Model Size P R mAP50 mAP50:95 

YOLOv5s 640 0.867 0.754 0.833 0.473 

YOLOv5l 640 0.899 0.776 0.825 0.466 

Faster R-CNN 640 0.898 0.846 0.910 0.486 

SSD 640 0.901 0.834 0.905 0.481 

YOLOv8n 640 0.891 0.732 0.881 0.493 

YOLOX 640 0.902 0.859 0.921 0.528 

Efficient Teacher 640 0.890 0.827 0.897 0.502 

V8 640 0.904 0.852 0.914 0.494 

V8ps 640 0.957 0.865 0.942 0.487 

 

Subsequently, this study compared the effects of fully supervised and semi-supervised training methods 

under different annotated sample proportions, and the experimental results are shown in Fig 8. In the figure, 

blue area on the left represents the mAP50 values obtained from the fully supervised training with the entire 

annotated samples, while the orange area on the right shows the mAP50 values obtained after the further 

semi-supervised training. Since the total number of samples used in the training is 7000, the annotated ratio 

of 20% corresponds to 1400 annotated samples and 5600 unannotated samples, and so on. 

To further verify the performance advantages of the algorithm proposed in this paper on the wheat spike 

detection dataset, comparative experiments were conducted with other mainstream lightweight object 

detection models, including YOLOv5s (Jocher, 2020), YOLOv5l, Faster R-CNN(Ren et al., 2017), SSD(Liu et 

al., 2016), YOLOv8n, YOLOX(Z Ge et al., 2021) and Efficient Teacher. For fairness, their default resolutions 

were not adjusted. The experimental results are detailed in Table 2.  

In this experiment, Efficient Teacher uses the YOLOv5s detector, while V8ps represents the semi-

supervised training results with the improved YOLOv8n as the baseline model, and V8 represents the semi-

supervised training results with YOLOv8n as the baseline model.  

YOLOv8n A B C P R mAP50 mAP50:95 

√    0.891 0.732 0.886 0.477 

√ √   0.913 0.818 0.901 0.484 

√  √  0.898 0.801 0.887 0.472 

√   √ 0.891 0.732 0.881 0.493 

√ √ √  0.921 0.877 0.904 0.463 

√ √                √ 0.886 0.823 0.890 0.462 

√  √ √ 0.902 0.840 0.906 0.483 

√ √ √ √ 0.957 0.865 0.942 0.487 
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Fig. 9 - Comparison of V8ps and fully supervised 

models in wheat spike detection effectiveness 

Fig. 10 - Comparison of V8ps and semi-supervised 

models in wheat spike detection effectiveness  

 

The fully supervised target detection algorithms listed in the table were all obtained with 300 epochs 

without pre-training weights. According to the data in Table 2, using the improved YOLOv8n as the base model, 

the mean accuracy (mAP50) reached 94.2% under the semi-supervised training condition, and the 

performance improved by 4.5% compared with the semi-supervised base model Efficient Teacher. Its precision 

exceeds all other algorithms in the table compared to the fully supervised model. If the base model is changed 

from an improved YOLOv8n to an unimproved YOLOv8n, the improved YOLOv8n achieves a performance 

improvement of 2.8% on the mAP50 index.  

Table 3 

Comparative experiments on object detection algorithms 

Model Manual 
count 

Model 
count 

 

Number of 
missed 

detection 

Omission 
factor 

 

Precision 
ratio 

 

YOLOv5s 359 321 38 10.63% 89.37% 

YOLOv5l 421 379 42 10.06% 89.94% 

Faster R-CNN 433 391 42 9.68% 90.32% 

SSD 217 196 21 9.59% 90.41% 

YOLOv8n 189 172 17 9.15% 90.85% 

YOLOX 285 259 26 8.98% 91.02% 

Efficient Teacher 295 269 26 8.83% 91.17% 

V8 311 285 26 8.28% 91.72% 

V8ps 354 331 23 6.43% 93.57% 

 

The manually counted images were randomly categorized into nine groups, each consisting of ten 

images, and the model was evaluated. As shown in Table 3, the enhanced model demonstrated significantly 

higher accuracy in real-world situations compared to other popular models, achieving a detection accuracy of 

93.57% in the tests. 
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Furthermore, Fig.9 and Fig.10 respectively present a comparative analysis of the wheat spike detection 

effects of the improved model compared to the fully supervised model and the semi-supervised model at 

different growth stages. In these images, (a) represents Heading stage, (b) represents Filling stage, and (c) 

represents Harvesting period. Accordingly, it can be concluded that the improved model in this study is more 

suitable for the application scenario of wheat ear detection in the field. 

 

CONCLUSIONS 

To address the challenges of small target sizes, severe occlusion, and high annotation costs in wheat 

spike detection, a semi-supervised wheat spike detection algorithm, named YOLOv8ps, was proposed. It is 

based on YOLOv8. Our main contributions are summarized as follows: wheat spike images are sourced from 

wheat field environments and the global wheat public database. After annotating the images, data 

augmentation was performed to create the final dataset. YOLOv8ps was developed by integrating the 

SPDConv module, which mitigates the adverse effects of processing small objects and low-resolution images, 

thereby enhancing the model's performance and stability in complex scenarios. Simultaneously, the 

introduction of the PSA attention mechanism further optimizes the model's performance. Ultimately, the 

combination of an improved semi-supervised learning method significantly enhances the model's detection 

accuracy. First, ablation experiments were conducted in a consistent training environment to analyze the 

independent impact of each improvement on the model. Subsequently, comparative experiments were carried 

out using both full-supervision and semi-supervision training methods under varying proportions of annotated 

samples to verify the effectiveness of the newly proposed YOLOv8ps in semi-supervised training. Finally, the 

model was compared with other existing models in terms of performance. Experimental results indicate that, 

compared to Efficient Teacher, the improved model's mean average precision (mAP50) increased by 4.5%, 

reaching 94.2%. In comparison to the full-supervision baseline model YOLOv8n, it increased by 6.1%, 

achieving excellent detection accuracy. Although model lightweighting and other optimization techniques have 

not yet been considered, future research will focus on expanding the dataset and exploring how to integrate 

these techniques with more advanced and efficient technologies to achieve a higher level of wheat detection 

performance. 
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